Clinical examples (2)

Repositioning individual teeth

The straightening of mesially tipped (second) molars in a full dentition represents a therapeutic challenge. The treatment is further complicated if the tooth is not only tipped but also partially impacted. The presence of a non-erupted third molar does not simplify the process (Fig. 1a). When planning the required appliance, it is important to consider whether it is necessary, for example, to reshape the entire dental arch (Figs. 1a-d) or just upright the tipped tooth. If miniscrews with bracket heads are used, it is possible to employ a special NiTi uprighting spring (such as the Memory Titanol spring, FORSTADENT). A standard multi-bracket appliance can be used to reshape the dental arch. At the same time, a second force element can be applied with the aid of a miniscrew and an uprighting spring (Figs. 1b-d). This avoids the loss of anchorage that inevitably occurs when only an uprighting spring is fixed to the multi-bracket appliance (Fig. 2). The straightening of an individual tooth may become necessary for periodontal, prosthetic, or orthodontic reasons. This is a very simple procedure if a miniscrew and uprighting spring are used, and the appliance remains invisible to the observer. The tooth need only be fitted with an appropriate attachment system that makes it possible to fix this to the uprighting spring. Depending on how the spring is set, it is even possible to achieve intrusion or extrusion of the tooth. This form of treatment is inexpensive for the patient and the orthodontist will find it highly effective.

Alignment of retinated teeth

The alignment of retained or displaced teeth, particularly in the case of canines, is one of the most common forms of surgical intervention in the field of orthodontic techniques. Numerous appliances are available—rubber bands, springs, orthodontic chains—that are effective to a greater or lesser extent. All these mechanisms have the same underlying problem: the neighbouring teeth must be used—directly or indirectly—to provide anchorage, so that the required traction forces can be applied. Ideally, the neighboring teeth will offer the greater resistance for the alignment of displaced teeth (Figs. 1a-c). If sufficient space is available, brackets will not be needed in the initial phase of treatment.

Skeletal adjustments

Palatine suture expansion

Rapid palatal expansion (RPE) is one of the most effective and stable methods of acquiring more transverse space in the upper jaw. The targeted screw rate should be in the range of 0.2 to 0.6 mm/day. As a rule, the appliance is fixed by means of bands to the molars and premolars. The desired transverse width can generally be achieved within 18 to 24 days. Thereafter, after three-month stabilisation phase should be observed, in order to allow ossification of the ruptured palatine suture.

Class II corrections

In the case of patients with Class II malocclusion who have
One-push bonding. Made by DMG.

TECO
With TECO, the total etch bonding system from DMG, you have everything under control. Besides its excellent bonding properties, TECO stands out with its new, very clever single dose application. In the DMG-patented SilVR dose the material is activated by simply pushing the button and can immediately be applied with only one hand - fast, clean and safe. Additional assurance is provided by the very user-friendly total etch technology which allows working on moist surfaces after etching and thus prevents over-drying of the dentine. If only everything were that simple.
DMG. A smile ahead.

Additional information is available at www.dmg-dental.com
completed or are near completing their growth phase, simple techniques for the forward positioning of the lower jaw are usually ineffective. Following a thorough initial examination and diagnosis, there are three possible therapeutic approaches: camouflage, fixed Class II correctional appliances (Herbst splint, Sabbagh Universal Spring, FMA, Jasper Jumper etc.) or orthognathic surgery. The patient must be informed of the advantages and disadvantages of each approach. All fixed Class II correctional appliances—irrespective of whether these use the Herbst splint or canted plane principle—have the same problem and the same undesirable side effects. There is a risk of protrusion of the lower frontal teeth and/or distalisation of the upper molars. By means of passive stabilisation with the aid of two miniscrews (Figs. 7 & 8), these effects can be readily avoided.

Orthognathic surgery

After surgical intervention to relocate or reposition the jaw (for orthodontic or traumatological reasons), it is important to maintain a stable correlation between bone fragments and the jaw in the postoperative phase. This promotes healing and prevents relapse. The occlusion appliance is fixed intra-orally, using intermaxillary elastic or wire ligatures, depending on the situation. It is essential to use the appropriate fixing options, whether this is a splint (Schuchardt splint) or a multi-socket appliance. Where these are really only necessary to involve the other jaw in the stabilisation of the surgical effect, if miniscrews are used in the opposing jaw (Fig. 9), the same effect is achieved—but with considerably less restriction from the point of view of the patient.

Pre-prosthetics

It is the aim of pre-prosthetic orthodontics to position the teeth optimally for the subsequent prosthetic. This can include intrusion, uprighting, and the opening or closing of gaps, amongst other techniques. As this series and many other publications have already shown, miniscrews are particularly useful in this context. Miniscrews can also be used as anchoring elements for a prosthetic prosthesis. Where teeth are missing (particularly the second canines, Fig. 10a) and the growth phase is not yet completed, the fitting of an intermediate prosthesis is problematic. As an alternative, particularly where additional anchorage is required, miniscrews can be used. A longer screw (8 or 10 mm) can be inserted in the centre of the dental ridge (Fig. 10b). There should be at least 1 mm of bone to the mesial and distal sides of the miniscrew. The hole for the insertion of a miniscrew (1.6 mm) should thus be at least 2.6 mm. A provisional crown can then be mounted onto the head of the miniscrew. If necessary, a bracket can be fixed to this crown (Fig. 10c).

Outlook

The clinical use of miniscrews supports a wide range of tasks. Dental repositioning that was previously deemed impossible becomes achievable, whilst possible repositioning techniques are improved and supported. In order to achieve this, miniscrews alone are not sufficient; an appropriate range of equipment is also necessary. Several suppliers of miniscrews offer, in addition to screws and insertion tools, a number of devices that facilitate the use of miniscrews. The fifth part of this series will focus on the wide range of useful auxiliaries that are available.

Contact Info

Dr Björn Ludwig
Am Bahnhof 54
56841 Traben-Trarbach
Germany
Tel.: +49 65 41 81 83 81
Fax: +49 65 41 81 83 94
E-mail: bludwig@kieferorthoparodie-mosel.de